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Abstract

Most oil wells co-produce natural gas. Producers can choose to burn this valuable co-

product on site (known as flaring) if the cost of connecting to the existing natural gas pipeline

network is sufficiently high. While flaring is damaging to the climate, there exists surpris-

ingly little research on the economics of flaring. I construct and estimate a dynamic model

of producer drilling and flaring decisions which depend on the current state of the pipeline

network and expectations over its evolution. My model also allows producers to internalize

spillover effects for their neighbors – any pipeline they build will extend the network and

weakly decrease their neighbors’ future pipeline connection costs. Using my model estimates,

I simulate pipeline development and flaring outcomes under counterfactual policies: a flaring

tax, a flaring ban, and a gas subsidy. My counterfactual simulations show that flaring abate-

ment costs are higher than previous studies but suggest that a flaring tax could substantially

reduce flaring. A $5/Mcf tax reduces flaring by 39%.
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1 Introduction

Networks are frequently studied in economics, but typically in static contexts where space is either

unimportant or abstracted away from such as communication networks or two-sided markets.

When space is abstracted away from networks can be modeled using graph theoretic techniques

or even more simple descriptors such as numbers of network participants. For example, Rochet

and Tirole (2003), in their classic models of two-sided markets, simply specify buyer and seller

gross surplus as a function the of number of participants on each side. Typically network problems

are characterized by network externalities. Consider the early development of phone or internet

networks where users are positively affected by the entrance of a new user.1

However, there are many examples of network problems where space is crucial and where

dynamics are important such as electricity grids, electric vehicle charging networks, and pipeline

networks. These structures are still characterized by traditional network externalities, but in

addition dynamics and space are important. The effect of a new entrant into the network is

dependent upon where that entrant is sited, and the future states of the market are dependent

upon current and past states. For example, consider the siting and construction of new renewable

energy sources. Many of the best places to site renewable energy projects are located in very rural

areas with relatively little transmission infrastructure and high costs of connecting to the existing

grid. When a new generation source, like a wind or solar farm, is proposed the developer is often on

the hook for expensive upgrades to transmission infrastructure that later entrants can use without

sharing in the costs (Department of Energy, 2022). Clearly, there are network externalities – one

producer’s decision to upgrade the grid will affect future potential entrants, but in addition the

decision to enter generates spatial and temporal dependencies. Moreover, in all of these examples

network externalities interact with more traditional environmental externalities. The interaction

of spatial and temporal dependencies have presented challenges in past work modelling these types

of problems. This paper will focus on the growth of a natural gas pipeline network, its relationship

with producer decisions to connect to it, and its implications for environmental outcomes.

In this paper, I set up and estimate a dynamic model of producer decisions to drill and connect

1However, network externalities need not be positive or even monotonic.
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to natural gas pipelines in the Permian Basin in Texas, accounting for the fact that the pipeline

network grows over time and that producers might consider spillover effects for their neighbor – that

when a driller connects, the pipeline network expands, weakly reducing costs for nearby potential

wellsites. Oil wells often co-produce natural gas, and producers have the option to burn the gas at

the wellhead (flare) if the cost of connecting to pipelines is too high. Flaring is socially costly, so

this paper will be primarily focused on investigating the relationship between the pipeline network

and producer drilling and flaring decisions. I answer three main questions. First, how do producers

choose to drill and flare and how is that decision affected by the pipeline network? Second, how

might potential policies aimed at reducing flaring affect flaring and production decisions, and the

growth of the pipeline network over time? Lastly, do producers internalize spillovers for their

neighbors, and if not, how much does this matter for flaring? I find that distance to pipelines is an

important driver of firm drilling and flaring decisions. I also show that flaring abatement costs are

relatively high, but that a flaring tax near the social cost of flaring could substantially reduce the

practice. Lastly, I estimate that firms do not consider spillovers for their neighbors which leads to

less drilling and higher emissions from flaring than in a counterfactual world where these spillovers

were internalized.

These questions are important because flaring likely has large social costs. The U.S. EIA

estimates that in 2020 about 420 million Mcf of natural gas was flared (or vented) in the U.S (U.S.

Energy Information Administration, 2021b). Natural gas primarily consists of methane (CH4) a

very potent greenhouse gas, but when it is burned it is mostly converted to CO2. Flaring is less

socially costly than simply letting the methane escape into the atmosphere (venting).2 However,

there is likely a wedge between the social cost of flaring gas at the wellhead and the social cost of

selling it for end use precisely because flares are oftentimes inefficient or unlit, allowing methane

2Assuming a discount rate of 3% the social cost of carbon is around $50 per ton while the social
cost of methane is $1500 per ton (Interagency Working Group on Social Cost of Greenhouse Gases,
2021). An Mcf of gas weighs around 50lbs. When burned it is converted into about 121 pounds
of CO2. Therefore if 100% is converted to CO2 the social cost of burning an Mcf of gas is around
$3. If instead, the same amount of gas is vented, this would result in whopping $37.5 in damages.
Thus, it’s easy to see why the social cost of flaring is heavily dependent upon the efficiency of the
flares – which is still hotly debated. EDF (2022) find that 7% of flared gas is released as methane
and a recent study by Plant et al. (2022) estimate that 9% is. In contrast, the EPA assumes this
number is 2% (40 CFR 98.233, 2010).
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to escape into the atmosphere. A study by the Environmental Defense Fund found that 7% of gas

flared is actually released directly as methane. Their estimates imply that flares in the Permian

Basin release 300,000 metric tons of uncombusted natural gas per year–resulting in around a half

billion dollars in external damages just from methane from flares (EDF, 2022). Flaring is mostly

unpriced in the U.S. In fact, most leases do not contain royalty clauses on flared gas, and most states

do not tax flared gas. Moreover, pipelines can be quite expensive. The Interstate Gas Association

of America (INGAA) reported that in 2016 an 8-inch gathering pipeline costs $264, 856 per mile

(ICF, 2018). Thus, flaring can be an attractive option for producers – especially when gas prices

are low, when the expected level of gas production from a well is low, or when the well is very far

away from existing pipelines.

In my model, drillers hold leases with time-limited options to develop parcels of land by drilling

a well. As more pipelines are built over time, connection costs for new wells decline. Producers

have expectations over the evolution of prices and connection costs, and choose when to drill and

whether to flare or connect to pipelines. The state space of my model is too large to compute a

full solution method (through backward induction) so I leverage the insights of Hotz and Miller

(1993) and Arcidiacono and Miller (2011) and use a two-step estimator with conditional choice

probabilities (CCPs) to estimate the parameters of the model. Estimation of the model uses

variation in expected revenues, which comes through changing prices and differences in lease-level

geology, and variation in distance to pipelines to back out the implied fixed costs of drilling, the

implied costs of building pipelines, and whether spillovers are internalized.

This paper makes a few important contributions to the literature. First, this paper is the first

to explore the endogenous relationship between drilling and gas pipeline construction. Second,

this paper is the first paper which explores how policies aimed at reducing flaring might affect

the drilling margin. Third, this paper is the first which estimates pipeline costs directly instead

of relying on reported costs. Lastly, this paper estimates whether firms internalize spillovers to

their neighbors in a new setting – pipeline construction. Combined, these contributions make this

paper an important contribution to the oil and gas literature and the best model of how potential

policies to reduce flaring would affect the drilling and connecting decisions of firms.
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The closest paper is perhaps Lade and Rudik (2020). This paper presents a static model

of wellpad-level flaring decisions which rules out spillovers and assumes the drilling margin is

fixed. They demonstrate that a policy instituted in North Dakota mandating a firm-level flaring

standard is far more costly than a tax which generates an equivalent reduction in flaring due

to heterogeneous costs across firms. They do this by constructing firm-level marginal abatement

curves using estimates of pipeline costs from an industry report. In contrast my model considers

dynamics, allows for producers to internalize spillovers, and allows policy to affect the drilling

margin. I also estimate pipeline costs directly rather than relying on industry data. I find much

higher abatement costs and demonstrate that these estimates do a better job of rationalizing the

observed flaring outcomes.

This paper also relates more generally to the economics literature on oil and gas development.

It’s common in this literature to treat the decision to drill as a dynamic optimization problem (see

Paddock, Siegel, and Smith (1988), Kellogg (2014)). This paper is the first that borrows the use of

CCPs to estimate the parameters of a drilling function, demonstrating that credible estimates of

the parameters can be estimated with this computationally inexpensive method. Next, the context

of this paper is quite similar to that of Covert and Kellogg (2017) who study the choice between

shipping crude via rail (which is environmentally costly and has high variable costs) and via pipeline

(which has high investment costs, negligible variable costs, and significantly lower environmental

damages). They find that pricing the externalities of rail shipping leads to a 12-29% increase in

pipeline capacity. In my context the “dirty”, low fixed-cost option is flaring, while the clean high

fixed-cost option is constructing a pipeline. I find that pricing the externalities of flaring leads to

a negligible increase in pipeline investment but a sizable reduction in flaring.

My model estimates indicate that industry reported estimates of pipeline costs underestimate

the true costs of pipeline building and that firms do not consider spillovers to their neighbors. I run

counterfactual simulations to explore the importance of spillovers and evaluate policy options to

reduce flaring. My counterfactual simulations suggest that the benefits of spillover internalization

are relatively small. Thus a sensible explanation for the lack of spillover internalization is simply

that the costs of contracting or negotiating might simply be higher than the benefits. My policy
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counterfactuals suggest that a tax on flaring close to its social cost would substantially reduce

flaring. A $5/Mcf tax reduces flaring by 39% while a 3$/Mcf tax reduces flaring by 29%.

2 Background

Oil and gas are often co-produced in wells. Oftentimes, the driller is primarily interested in the oil

and gas is treated as a by-product. This happens when the oil-to-gas ratio at a potential well site

is high, when gas prices are very low, or when the well is far away from existing infrastructure.

When the costs of collecting the gas are high, it is a common practice for drillers to flare the gas.

Texas allows producers to flare for up to 10 days after a new well completion, then requires a

permit to continue flaring. The Texas Railroad Commission (RRC) states that to receive a permit,

the operator “must provide documentation that progress has been made toward establishing the

necessary infrastructure to produce gas rather than flare it” (Texas Railroad Commission). How-

ever, the number of flaring authorizations has ballooned over the past decade with the increase

in fracking. Figure 1 plots the number of exemptions over time, which I’ve obtained via a Public

Information Act request. In practice, many permits are issued because the gas is “uneconomical

to collect.” Moreover the Texas RRC has a reputation for “rubber stamping thousands of flaring

permits without requiring oil companies to come up with a plan to curb the practice” (Chapa,

2021). In fact, between 05/02/2021 and 05/02/2022 401 applications for permanent exemptions

have been approved and zero have been denied.3

This paper studies flaring caused by producers choosing to not build pipelines. However, other

causes of flaring do exist. Agerton and Upton (2020) show that substantial portions of flaring

come from wells that have previously sold gas–implying that the wells are indeed connected but

must flare due to pipeline capacity or processing constraints. In this paper, I abstract away from

processing and capacity constraints since I cannot directly observe processing and pipeline capacity

3Beginning on 05/02/2021, the Texas RRC implemented online applications for flaring per-
mits, and has made this data publicly available at https://webapps.rrc.state.tx.us/swr32/
publicquery.xhtml.
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Figure 1: Number of Flaring Exceptions Issued by the Texas RRC by Year

utilization rates.4

Producers drilling in new fields often drill first, then wait to build infrastructure until they

are sure the well will be productive, or until gathering and processing capacity becomes available

in the area. This leads to any produced gas being flared during the interim. In figure 2 I show

completed wells and permitted pipelines at four points in time. In the first two panels, there are

many wells that are unconnected (and therefore flaring any associated gas), but will eventually go

on to be connected by the last panel.

The pipeline networks which collect gas likely exhibit some network properties. Once a line is

built, more connections can be added to that line at a later date (subject to capacity constraints).

This means that the costs of connection at a given site likely decrease over time as new infrastruc-

ture creeps closer to that site. In figure 3 you can see that between 2005 and 2020, the pipeline

network in the Permian Basin, especially the westernmost parts, fills out substantially. In theory,

contracting would likely be able to internalize this network externality. However, little research

has been done on whether this happens and to what degree.

Typically drillers will contract out with mid-stream gas gathering companies to have their

wells connected. These gathering companies are one way that network externalities might be

4Moreover, the analysis of Agerton and Upton (2020) seems to complement the main idea of
this paper. They show that the proportion of gas from unconnected wells in three out of four basins
decreases over the 2008-2020 period, consistent with the idea that the practice of flaring without
connecting to a pipeline will be more prevalent earlier in a basin’s productive life and decrease as
the network get built out and as infrastructure becomes available.

7



(a) 2005 Snapshot (b) 2010 Snapshot

(c) 2015 Snapshot (d) 2020 Snapshot

Figure 2: Snapshots of the development of a field from 2005-2020. Black dots are the locations of
well surface holes, and red lines are natural gas pipelines permitted by that date.
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(a) 2005 Pipeline Network (b) 2020 Pipeline Network

Figure 3: 15 Years of Network Expansion

internalized. For example, a gathering company might be willing to charge below marginal cost

to connect a well that would generate lots of spillovers (and hence contracts for the gathering

company in the future). However, the industry is mixed between independent well operators and

gatherers and larger producers which are vertically integrated and have the ability to both drill

and build pipelines. In this paper, like many others in the literature, I abstract away from these

firm-type heterogeneities.

3 Data

3.1 Lease data

I use lease data collected by Enverus (formerly DrillingInfo). This lease data provides the spatial

polygon of the lease as well as observables such as the grantor, grantee, effective date, expiration

of primary term, and royalty rate. I process the raw lease data through two layers of clustering,

described more in the appendix. The first issue in the lease data is that there are often multiple

rows identifying what is clearly the same lease. This seems to be primarily a result of undivided

mineral interests.5 To deal with this, I follow many of the lease processing choices of Herrnstadt,

5For example, multiple members of a family might each show up as a distinct grantor with her
own row in the data.
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Figure 4: Leases in the Sample

Kellogg, and Lewis (2020). Namely, I use a hierarchical clustering algorithm on the observables of

leases to collapse these into single rows.

Next, I identify lease amendments by also using a hierarchical clustering algorithm, this time,

only on the spatial data. For example, there might be two rows of data corresponding with the

same polygon. One has a primary term from 12-01-2005 through 12-01-2008, the other has a

primary term running from 12-01-2007 through 12-01-2010. I interpret this as a lease amendment

whereby the primary term is extended mid-lease. More details on the processing of the lease data

can be found in the Appendix.

In my analysis I only use leases from the Permian Basin.6 The reason for this is primarily

computational. Different basins have vastly different geological characteristics, and time-profiles

of drilling. In my computational model, I would be unable to compute basin-time fixed effects, so

I simply select the Permian Basin, the most active basin in Texas for my time sample (2010-2019).

Figure 4 plots the leases in my estimation sample.

6I use U.S. EIA boundaries to define the Permian basin. These boundaries can be found at the
EIA.
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3.2 Production data

I use well-level monthly production data obtained from Enverus to predict expected production for

leases (both drilled and never drilled). Enverus provides data on well-level monthly production of

both oil and gas. It also contains information on the observables of the well such as the spud and

completion dates, and the depth, lateral length, and location. To construct expected oil and gas

production from lease i at t, which I call ξoit and ξ
g
it, respectively, I calculate the inverse-distance

weighted mean of expected production from all wells completed within the last 18 months of t

within 20km of i. Section 6.4 provides more detail on how I construct expected production.

Unfortunately, the Enverus data does not provide information on flared versus sold volumes

at the well-level so I gather this from the Texas Railroad Commission (RRC). The RRC provides

monthly production data at the lease-level (not the same lease definitions as Enverus), with gas

volumes broken down into flared, sold, and vented volumes. I infer a connection date for each lease

as the earliest date when gas is sold. I merge that connection date into the Enverus production

dataset using an RRC lease-Well API crosswalk.

3.3 Pipeline data

I obtain geospatial pipeline data from the Texas Railroad Commission (RRC). I also collect data

on when individual pipelines were permitted from 2010 through 2019, which allows me to construct

the evolution of the gathering network over those 9 years. Unfortunately, these permitting dates are

not necessarily construction dates and construction typically happens after permitting. Moreover,

I am unable to observe expansions to a line under the same permit, so these data contain errors

where the direction of bias is ambiguous.

3.4 Data processing and panel construction

I begin by turning the lease data into a quarter-lease panel dataset with a start date of 2010-01-01

and an end-date of 2019-12-01. I spatially join the lease data with the Enverus well data. A

lease becomes “drilled” if I observe a well spudded between the expiration and effective dates and

intersect the lease polygon. I call a lease “unconnected” if either zero gas is sold for the first year
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of the lease or if there are at least 200 days between the first production dates and first connection

date (inferred from Texas RRC data) and over 70% of the RRC lease’s first-year of produced gas

is flared.

Before dropping any data, there are 64,948 leases and 617,846 lease-quarter observations. I drop

18,989 lease-quarter observations (3%) due to missing distance or expected productivity. Another

37,319 are dropped because of missing neighbor observables (which are needed to calculate the

spillover effects).

In addition I am missing observations on whether a drilled lease becomes connected. There

are 24,159 drilled leases and I cannot determine how much 851 of those flared. I drop all lease-

quarter observations for those wells. I also randomly drop a proportionate amount of never-drilled

leases since my estimation strategy hinges on being able to estimate the probability of drilling

and connecting. I am left with 57,776 leases and 528,883 lease-quarter observations. Summary

statistics for the leases are presented in Table 1.

Table 1: Summary Statistics

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max

Primary Term Length 57776 38.775 15.252 -2 36 36 360

EffectiveYear 57776 2013.026 3.405 1995 2011 2016 2020

ExpirationofPrimaryTerm 57776 2016.288 3.398 2010 2014 2019 2045

Unconnected 23575 0.099 0.299 0 0 0 1

Expected Discounted Oil 57776 0.005 0.005 0 0.001 0.008 0.024

Expected Discounted Gas 57776 0.02 0.033 0 0.002 0.024 0.432

Start Distance 57776 1.478 3.522 0 0 1.345 34.239

End Distance 57776 1.402 3.508 0 0 1.127 34.239

Royalty 33514 0.232 0.032 0.01 0.2 0.25 3.1

Most leases have a primary term length of three years. Both the 25th percentile and 75th

percentile lease have primary term lengths of 36 months. About 40% of leases become drilled

and of those about 10% of leases that are drilled are unconnected. The average lease is about

a kilometer and a half away from the nearest pipeline, though many leases have a pipeline that

intersects with the lease polygon.

12



4 Descriptive Results

To motivate the setup of my model and confirm that the variation in the observables has the

predicted effect on drilling and flaring outcomes I estimate some descriptive regressions. The

first set of regressions explores how flaring outcomes conditional on drilling vary across leases. The

second set of regressions explores how the lease observables affect the timing of drilling – regardless

of flaring outcomes.

First, I divide the spatial extent of the Permian basin into 0.05 longitude×0.05 latitude grids.7

I use this grid to include grid-square fixed-effects in all regressions. The underlying logic is that

geology should be similar within a given grid-square. This approach is similar to Covert and

Sweeney (2019) who use a 10 mile by 10 mile grid to control for underlying geology to study

revenues received by landowners under auctions versus informal negotiations.

Specifically, the equations I estimate are:

yit = β1dit + β2d
2
it + β3ξ

o
it + β4ξ

g
it + β5p

o
t + β6p

g
t + β7N

benefit
it + γg(i) + ϵit (1)

where yit is the outcome of interest, dit is the distance from lease i at time t to the nearest

pipeline, ξg, and ξo are expected discounted gas and oil production, pt are oil and gas spot prices

during quarter t, Nbenefit measures how many leases would have their distance reduced by i con-

necting, and γg(i) is a grid fixed-effect. The outcomes of interest are quantity flared, quantity of

gas sold, the percentage of gas flared, and a dummy for whether the lease is unconnected during its

first year. I expect distance to be correlated with increased flaring, high natural gas prices to be

correlated with decreased flaring, and high oil prices to be correlated with increased flaring. The

coefficients on Nbenefit will be negative if leases which could generate higher spillovers for their

neighbors are more likely to connect.

Results from these regressions are presented in table 2. All dependent variables are standardized

to have a mean of zero and a standard deviation of one. The first three columns present OLS

results with standardized dependent variables, the last column presents the coefficients of a logistic

7In the Permian, these grids are approximate 10 square miles – smaller than Covert and Sweeney
(2019) use in their paper with a similar research design.
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regression with the binary dependent variable, 1(Unconnected). The last column is the primary

column of interest since it maps to the outcomes in the full dynamic discrete choice model. Focusing

on column (4), the effect of distance is quite large. A one standard deviation increase in distance

increases the odds of a well being unconnected by 68% (exp(0.576−0.057)). More productive wells

tend to be far less likely to remain unconnected. However, looking at columns (1), (2) and (3)

suggest that wells with higher expected oil productivity tend to both flare more and sell more gas,

while wells with higher expected gas productivity do not flare more gas than their less productive

counterparts. The effect of prices on all of the dependent variables appears relatively small, though

the coefficients have the expected sign and many are significant. Higher oil prices are associated

with higher percentages of gas flared, while high gas prices are associated with lower percentages

of gas flared. Lastly, none of these regressions present any evidence that leases are more likely to

connect if they have neighbors that might benefit from that choice.

Table 2: Effect of Observables on Flaring Outcomes Conditional on Drilling

Percent Flared Q Flared Q Sold Unconnected
(1) (2) (3) (4)

Distance 0.238∗∗∗ 0.006 -0.013 0.576∗

(0.073) (0.048) (0.054) (0.350)
Distance2 -0.025∗ -0.003 0.008∗ -0.057

(0.014) (0.008) (0.004) (0.050)
Expected Oil Productivity (ξo) 0.005 0.141∗∗∗ 0.116∗∗∗ -1.24∗∗∗

(0.023) (0.021) (0.026) (0.245)
Expected Gas Productivity (ξg) -0.096∗∗∗ -0.019 0.234∗∗∗ -0.452∗∗

(0.035) (0.034) (0.043) (0.205)
Oil Price (pot ) 0.056∗∗∗ 0.002 -0.051∗∗∗ 0.082

(0.015) (0.015) (0.012) (0.107)
Gas Price (pgt ) -0.019∗ -0.007 0.011 -0.005

(0.011) (0.014) (0.010) (0.083
N Benefiting Leases 0.008 -0.007 -0.013 0.121

(0.014) (0.011) (0.019) (0.153)

Family OLS OLS OLS Logit
Observations 18,846 19,737 19,737 5,135
R2 0.627 0.503 0.698
Within R2 0.015 0.012 0.088
Squared Correlation 0.288
Pseudo R2 0.268
BIC 8,562.2

Grid fixed effects ✓ ✓ ✓ ✓

Notes: Each column displays estimates of equation 1. Standard-errors are clustered at the
grid-level. All independent variables are standardized.
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Next I show how the observables are associated with drilling probabilities using a similar grid

fixed-effect strategy. I run a logit of:

1(i drilled during t) = β1dit + β2d
2
it + β3ξ

o
it + β4ξ

g
it + β5p

o
t + β6p

g
t + β7N

benefit
it + γg(i) + ϵit (2)

Results are presented table 3. Again, distance has a strong negative effect on the likelihood

of drilling while expected oil production has a strong positive effect. Here, the characterization of

drillers being primarily interested in oil seems true. Higher expected oil productivity and higher oil

prices are both strongly associated with increases in the propensity to drill, while neither expected

gas productivity or gas prices have significant coefficients. A one standard deviation increase in

ξo is associated with a 127% increase in the likelihood of drilling while a one standard deviation

increase in the price of oil is associated with a 38% increase in the likelihood of drilling.

The coefficient on the number of benefitting leases is negative. If firms internalized benefits

for their neighbors, we would expect that coefficient be positive. However, N benefitting leases is

likely correlated with a lease’s number of undrilled adjacent leases and firms might prefer to wait

to see if adjacent tracts are productive before drilling or might be interested in the productive

inputs used by neighboring firms.8 These issues have been previously explored by Décaire, Gilje,

and Taillard (2019), Covert (2015), and Covert and Sweeney (2022).

5 A Dynamic Model of Drilling and Flaring

I formulate the drillers’ problem as a discrete-time optimal stopping problem. In each quarter

up until and including the time of the leases expiration, the lessee observes a vector of the state

variables, x⃗it and makes the decision to either wait, drill and flare, or drill and gather. I denote

this set j ∈ {W,F,G}. Once the lessee decides to drill, either with j = G,F , that period becomes

the terminal period. The operator then receives the expected sum of discounted revenue from

8When a well is drilled, the depth is usually observable by neighbors. The inputs in the fracking
job are also required to be disclosed on fracfocus.org, so firms can learn about the best inputs for
production by learning from their neighbors.
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Table 3: Fixed-Effect Logit of Observables on Drilling Outcomes

Drill
(1) (2)

Distance -0.617∗∗∗ -0.763∗∗∗

(0.187) (0.134)
Distance2 -0.001 0.025∗

(0.022) (0.014)
Expected Oil Productivity (ξo) 0.417 0.819∗∗∗

(0.394) (0.104)
Expected Gas Productivity (ξg) -0.216 -0.093

(0.510) (0.085)
N Benefiting Leases -0.433∗∗∗ -0.199∗∗∗

(0.068) (0.065)
Gas Price (pg) 0.039

(0.045)
Oil Price (po) 0.325∗∗∗

(0.059)

Standard-Errors Grid-date Grid
Observations 30,087 200,341
Squared Correlation 0.315 0.091
Pseudo R2 0.338 0.212
BIC 44,158.5 56,027.4

Grid-date fixed effects ✓
monthstilexp fixed effects ✓ ✓
Grantee fixed effects ✓ ✓
Grid fixed effects ✓

Note: Each column displays estimates of equation 2. Standard errors are clustered at the grid
level. All independent variables are standardized.
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production and pays the drilling and connecting costs.9 This means the drillers’ problem is a finite-

horizon optimal stopping problem with two potential actions for stopping, and can be formulated

as a dynamic programming problem with a Bellman equation.

Thus, the firm’s problem is

V (x⃗it, ϵit) ≡ max
j
E

[ T∑
t=1

βt−1(π(j, x⃗it) + ϵitj)

]
(3)

where T is expiration quarter of the lease, π(j, x⃗it) is the per-period profit of taking action j,

with observable lease state variables, x⃗it. ϵitj is an unobserved shock assumed to be i.i.d. Type-I

Extreme Value with scale parameter σ. Unlike discrete choice estimation of consumer preferences

where the outcome is scale-less indirect utility, σ is identified since expected revenues are being

measured directly in dollars. The set of state variables, x⃗it, include i’s distance to the nearest

gathering line at t, dit, the price of oil and gas, pot , p
g
t , the expected sum of discounted production,

ξoit, ξ
g
it, the effect of building a pipeline on i’s neighbors ∆Ṽit, the time t (and hence the time until

i’s expiration date), and the royalty rate of the lease, ri.
10

The firm’s maximization problem can be expressed in Bellman form as:

V (x⃗it, ϵit) = max
j

{π(j, x⃗it) + ϵitj + E[V (x⃗it+1|x⃗it)]} (4)

The deterministic part of per period payouts are given by:

πi(j, ξ
o
it, ξ

g
it, pt, dit,∆Ṽ ) =



Ro
i (pt, ξ

o
it)− CF

t j = F

Ro
i (pt, ξ

o
it) +Rg

i (pt, ξ
g
it)− CG

t (dit,∆Ṽ ) j = G

0 j =W

9An underlying assumption here is that each lease can only be drilled once. This is clearly not
true - many parcels could contain multiple wellsites. However, this is a simplifying assumption
also made by Herrnstadt, Kellogg, and Lewis (2020).

10I only consider pipeline construction spillovers. I do not, for example, think about common
pool problems that can arise in some natural resource extraction problems (see ? for an exploration
of common pool problems and lease option exercise). The common pool problem is not a major
issue in shale formations, since hydrocarbons are only released after fracturing the rocks under
high pressures, causing little or no impact on neighboring parcels (Décaire, Gilje, and Taillard,
2019).
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where Ro and Rg are the expected revenue from oil an gas, respectively, and CF , CG are the

the costs of drilling and flaring and drilling and gathering. Revenues are calculated as expected

discounted production (ξ) multiplied by the spot price less royalties and state severance taxes

(4.6% for oil and 7.5% for gas). Royalties often depend upon the lessor and for private land, are

often negotiated along with the up-front price of the lease.

Ro
i (pt, ξ

o
it) = ξoitp

o
t (1− ri − 0.046)

Rg
i (pt, ξ

g
it) = ξgitp

g
t (1− ri − 0.075)

I assume costs can be decomposed into:

CF
t = δF + δy(t)

CG
t = δG + δy(t) + αddit − αṼ

∑
k

∆Ṽik

δF and δG are the fixed costs associated with flaring and gathering, respectively. δy(t) are year

fixed effects that allow the price of drilling to move over time. δy(t) capture changes in the rental

rate of drilling rigs as well as changes over time in average well depth or complexity. ∆Ṽik is a

measurement (in the same units Ṽ is denoted in) of how much building a pipeline to i increases the

value of a neighboring lease, k, and will be discussed in greater detail in the next section. The logic

behind this cost function is that pipeline connection costs will be a function of overall distance,

but that there might be a discount to the drilling firm if the pipeline is expected to be valuable for

the gathering firm in the future. αṼ will measure the proportion of spillover benefits internalized

by firm i.

Define the ex-ante value function as the expected value of Vit before the revelation of ϵit:

V̄it(x⃗it) ≡
∫
Vit(x⃗it, ϵ)f(ϵ)dϵ (5)

where f(·) is the distribution of the error term, ϵ.
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Finally, let Ω(·) be the transition probabilities of the state variables and define the conditional

value function as the value of making a choice j in period t (less the error term), then behaving

optimally from t+ 1 onward:

vit(j, x⃗it) ≡ πi(j, x⃗it) + β

∫
V̄it+1(x⃗it+1)Ω(x⃗it+1|x⃗it)dx⃗it+1 (6)

Since the error terms are assumed to be type-I Extreme Value, the choice probabilities are given

by the familiar logit form:

Pr(i chooses j|x⃗it) =
exp(vit(j, x⃗it)/σ)∑
k exp(vit(k, x⃗it)/σ)

(7)

6 Estimation

6.1 Dynamic Discrete Choice Estimation

Because of the assumption on the error term, ϵ, Hotz and Miller (1993) and Arcidiacono and Miller

(2011) show that the ex-ante value function admits the closed form:

V̄it(x⃗it) = −σ ln(Pr(j = j̃|x⃗it)) + vit(j̃, x⃗it) + σγ ∀j̃ (8)

where γ is Euler’s constant. The intuition here is that the ex-ante value function can be found by

evaluating the conditional value function, v, at any j̃, then applying a correction which is larger

when the probability of choosing j̃ is smaller. The constant term at the end, σγ is simply the

expected value of ϵ. I omit this term for the remainder of the paper since choice probabilities are

invariant to an additive constant in each vj .

Since V̄ (x⃗it) can be evaluating using any choice j̃, I can select a terminating action j̃ = G, then

V̄it(x⃗it) = −σ ln(Pr(j = G)|x⃗it) + π(G, x⃗it) (9)
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Equation 9 can be substituted into the conditional value function, equation 6 to yield:

vit(j, x⃗it) = π(j, x⃗it) + β

∫
[−σ ln(Pr(jt+1 = G|x⃗it+1)) + π(G, x⃗it+1)]Ω(x⃗it+1|x⃗it)dx⃗it+1 (10)

All of the pieces of equation 10 can be constructed from the data. π(·) is simply a linear function

of the parameters and observables. Pr(jt+1=G|x⃗it+1) and Ω(x⃗it+1|x⃗it) can be directly estimated

from the data. Since π is linear in the stochastic state variables, it can be brought outside the

integral and evaluated at E[x⃗it+1|x⃗it]. To construct
∫
−σ ln(Pr(jt+1 = G|x⃗it+1)Ω(x⃗it+1|x⃗it)dx⃗it+1,

I estimate the transition function for x⃗it, Ω(x⃗it|x⃗it+1), then take simulation draws of x⃗it+1, calculate

the log probabilities associated with the simulation draws, then average.

For each j, you can express the v as:

v(j, x⃗it) =



ξoitp
o
t − (δF + δt) j = F

ξoitp
p
t + ξgitp

g
t − (δG + δt + αddit − αV

∑
k ∆Ṽik) j = G

β[ξoitE[pot+1] + ξgitE[pgt+1]− (δG + E[δt+1] + αdE[dit+1 − αV

∑
k ∆Ṽik)+ j =W

σ
∫
− ln(Pr(jt+1 = G|x⃗it+1))Ω(x⃗it+1|x⃗it)dx⃗it+1

(11)

The parameters of to be estimated are αd, αṼ , δC , δG, δt, and σ. In theory, β is identified also,

but its common practice in the dynamic discrete choice literature to simply pick a reasonable value

for β. I select 0.98, implying a yearly rate of about 0.92. δt and E[δt] are not all identified without

some restrictions. The same issue appears in Gowrisankaran et al. (2012) and Murphy (2018).

Both papers fit δt+1 and δt to an AR(1), though their exact estimation process varies. I choose to

estimate

δt+1 = ω0 + ω1δt + ηt

within the likelihood function. Then replace E[δt+1] with δ̂t+1.

Finally, with all of the v’s in hand, I can estimate the parameters of of the model via maximum

likelihood by constructing a likelihood function from the choice probabilities given in equation 7.
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6.2 Transition Probabilities - Ω(x⃗it+1|x⃗it)

Some of the state variables, such as the time fixed effects, transition deterministically. Other state

variables, namely ξoit, ξ
g
it,∆Ṽit, transition over time. However, I do not want to think of the firm

as “waiting for good draws” of these state variables so I assume that their expected value in t+ 1

is equal to their value in t. Kellogg (2014) essentially makes the same modelling assumption.11

That leaves transitions in dit, p
o
t , and p

g
t . To simulate changes in dit I simply take draws from

the observed distribution in ∆dit for different bins of d. Figure 5 plots these distribution of these

distance changes.

Figure 5: Positive changes in distance (m) for leases at varying distances

To follow estimate the transition of pot and pgt I follow Hernnstadt et al (2020) and Kellogg

(2014) and estimate the following Markov process for both oil and gas:

ln(pt+1) = ln(pt) + κo + κ1pt + σηt+1 (12)

In this price process κ0 and κ1 are drift and mean reversion parameters, respectively. Coef-

ficients from the estimation of equation 12 are found table 4. I’ve also plotted the time series of

prices along with some simulations based off of these parameters in figure 6. The estimated coeffi-

11Kellogg(2014) does not so explicitly try to construct expected production. Instead, he as-
sumes production rationalizes costs (whereas I essentially do the opposite – construct expected
revenue then estimate costs to rationalize production decisions.). However, in his dynamic model
he makes the assumption that producers do not integrate over their expectation of new realizations
in expected production to calculate their continuation value of the lease.
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cients indicate that both price series are process with positive expected drift and mean reversion,

but that they are predominantly driven by the error term. You can see that for both processes,

the residual standard error is much larger than the constant (drift term).

Table 4: Estimated Markov Process Parameters

Dependent variable:

∆ log oil price ∆ log gas price

(1) (2)

Price −0.002∗∗ −0.022∗∗

(0.001) (0.010)

Constant 0.107∗∗ 0.096∗

(0.048) (0.049)

Observations 83 83
R2 0.059 0.055
Adjusted R2 0.047 0.043
Residual Std. Error (df = 81) 0.168 0.193
F Statistic (df = 1; 81) 5.047∗∗ 4.697∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure 6: EIA Spot Prices and Examples of Simulated Price Paths

6.3 Construction of the spillover term - Ṽ

Consider the example in figure 7. There are nearby leases, A and B. A is considering building

and connecting a well. If A chooses to connect, the future connection costs for B will decrease

in the next period by αd(|AB| − |B|). B should be willing to compensate A up to the difference
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in B’s ex-ante value: VBt(pt, dBt = |AB|) − VBt(pt, dBt = |B|) to connect.12 In practice, the

construction of pipes and wells are typically completed by separate companies. However, the

general principle still applies. A gathering company might be willing to offer a discount to A

(to entice it to connect), with the hopes of decreasing its future costs and increasing its expected

number of future customers. However, the gathering company is unlikely to be able to capitalize

the entire change in V B , and therefore will be unable (and potentially unwilling) to pass that

entire change on to A. Moreover, there might be other price distortions such as market power that

would lead the gathering companies to not pass along a discount to A. My estimation strategy will

estimate the proportion of this change in value captured by driller when the he chooses to connect

(which should be between zero and one).

Figure 7: Hypothetical example showing that lease B’s connection distance depends upon the
choice of lease A.

I can use the Hotz-Miller identity, equation 9, to simplify this difference to become the sum

of the difference in expected log probabilities and the difference in pipeline costs. The parts of

12Some readers might notice that if the goal is to connect both A and B at minimum cost, the
best way to do it would be to construct |B|, then draw a line orthogonal to |B| to A. I believe
that this is a planning issue as opposed to a spillover issue. For example, you would expect if A
and B were owned by the same firm they would be more likely to select this minimum distance
solution. Méndez-Ruiz (2019) studies whether contracting costs lead to more flaring by estimating
a structural model of flaring in the Bakken, and addresses this planning issue more directly. He
assumes that contracting costs are minimized within a firm, and estimates the degree to which a
group of firms can transact as a single firm by exploiting variation in firm concentration across
markets.
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(a) The spillover for B of A connecting
is zero

(b) The spillover for B of A connecting
is positive

Figure 8: Variation in Ṽ resulting from geometrical differences in the configuration of leases and
pipelines.

equation 13 can be constructed by calculating the counterfactual distance for B if A connects, then

constructing the predicted probabilities (as discussed later in section 6.5).

V Bt(pt, |AB|)−V Bt(pt, |B|) = ln(pr(jt = G||B|, pt))−ln(pr(jt = G||AB|, pt)+αd(|AB|−|B|) (13)

To construct Ṽ , for each lease-quarter I draw the shortest line from that lease to already

existing pipes. For all leases k ∈ K within 2km of that hypothetical line, I save their actual

and counterfactual distances. Then Ṽit =
∑

k∈K ∆V ik is calculated during each iteration of the

likelihood function. Variation in Ṽ comes from differences in the likelihood of neighbor lease

exercise (which is affected by, among other things, lease productivity, lease distance, and time

until lease expiration) as well as geometrical variation in how much A choosing to connect affects

B. Consider the simple example below in figure 8. In the first panel, A connecting has no effect

on the distance B must traverse to connect. In the second panel, if A connects, that generates a

spillover for B.

6.4 Construction of expected revenue

To measure expected productivity at each lease at time t, I take an inverse-distance weighted mean

of expected production, ξi, from all wells completed within the past 18 months of t within 20km

of the lease. In the dynamic model ξit enters as a state variable. Since the time window used to

compute ξ moves with t, this means that expected productivity will change over time, despite the

fact that the actual geology of the lease is time-invariant. This seems reasonable given that the

outcome of neighboring wells likely leads to firms updating their beliefs.
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Expected production from each well is an estimated term. To construct estimated production,

I make a common assumption in the literature – to follow the Arps Model and assume production

decays exponentially from a well (Lade and Rudik (2020), Méndez-Ruiz (2019)).13 Oil and gas

production in each time period, t, is given by:

ojt = Oj0t
βo exp(νojt)

gjt = Gj0t
βg exp(νgjt)

where Oj0, Gj0 are the initial rates of production, β are the decline rates, and ν are the model

errors.

I estimate the decline rates, βo and βg, separately for wells drilled by year by estimating the

well fixed-effect equations:

log(gjt) = βg log(t) + δj + νgjt

log(ojt) = βo log(t) + δj + νojt

Figure 9 plots the estimated β̂g and β̂o. For context, a decline parameter of −0.5 implies that

46% of discounted production over the first five years of a well’s life will occur during the first

year. With the estimated decline parameters in hand I can calculate expected monthly production

by observing the well’s initial production rate, which I obtain from Enverus. I use second-month

production instead of first-month, since the first-month values are often truncated by not having

a full month of production. Finally, I obtain expected well-level lifetime production by summing

and discounting expected monthly production for each well over a five year period.

13An assumption used throughout the construction of expected production is that producers
take expected production from their leases as a given. This is both technically false and a good
simplifying assumption. Producers can affect their production by varying well depth, horizontal
length, and amount of fluid used in fracturing. However by constructing expected production using
nearby wells, I am essentially assuming that well-design questions are already enveloped-in and
allowing expected production to reflect changes in technology over time and differences in optimal
well construction across space.
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Figure 9: Plot of estimated Permian basin decline parameters by drilling year. Oil decline param-
eters are plotted in red while gas decline parameters are plotted in blue.

6.5 Estimation of conditional choice crobabilities

Ideally, I would be able to construct conditional choice probabilities non-parametrically. However,

the relatively large state space makes this impossible. Following other papers in the literature such

as Murphy (2018), I estimate conditional choice probabilities by estimating a logit with b-spline

expansions. Specifically I estimate:

ˆProb

(
j = G|x⃗it

)
= Λ

( 5∑
s=1

ϕξ
o

s S
ξo

s (ξoit)+

5∑
s=1

ϕξ
g

s S
ξg

s (ξgit)+

5∑
s=1

ϕdsS
d
s (dit)+

2019∑
y=2011

ϕy+

8∑
τ=0

ψτ

)
(14)

where Λ denotes the logistic CDF, S(·) are the spline basis functions of the argument in the

superscript, ϕy are year fixed-effects, and ψτ are quarter-until-expiration fixed-effects.

7 Results

7.1 Conditional choice probabilities

The coefficients from the logit match the expected intuition from the underlying dynamic model.

Figure 10 plots the coefficients on quarter until expiration from the choice probability logit. In
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Figure 10: Coefficients on Quarter Until Expiration

the dynamic model the probability of drilling and gathering should increase exponentially until

the time of expiration. The shape of the estimated fixed effects is mostly consistent with this,

with the main exception being that the coefficient at the quarter of expiration is lower than the

coefficient for one quarter away from the time of expiration. These coefficients are an important

source of variation in the expected probability of drilling since they do not directly affect the payout

associated with drilling.

7.2 Dynamic discrete choice cesults

Results for the dynamic discrete choice can be found in table 5 and the estimated year fixed effects

are plotted in figure 12. Standard errors are calculated with 50 bootstrap replications where I

sample leases with replacement. Expected revenue was entered into the likelihood as $10, 000, 000

in revenue, so each parameter can be interpreted as tens of millions of dollars. The scale parameter

of the error term is estimated to be $7 million. This implies a standard deviation of the error term

of $7 million · π/
√
6 = $9 million.

The estimated fixed costs are $38, 000, 000 and $21, 000, 000 for F and G, respectively, which

are quite high. However, these are the implied costs for a randomly selected lease – most of which

are not observed drilling. The implied cost for drilled wells is the estimated fixed cost plus the

error term (which is structurally a cost shock). Conditional on drilling the error term is expected

to be positive and relatively large. Thus, the expected cost for wells actual observed drilling is
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Figure 11: Expected value of fixed costs for drilled wells by year. For flared wells this is calculated
as Cf + δy(t) + E[ϵiF t|i chose F during t]. It is calculated analogously for gathered wells.

far lower. The same issue appeared in Murphy (2018) in his study of parcel development in San

Francisco using very similar methods. His estimated cost of development were very high, but the

fixed costs of development for parcels which actually developed were far more believable. I find

that when the expectation of the error term for drilled wells is included with the fixed costs, most of

the implied fixed costs are positive, suggesting that my estimates of revenue are biased downward.

Figure 11 plots these implied fixed costs. You can also see that after including the expectation of

the conditional error, the fixed costs for gathered wells are greater for gathered wells than flared

wells.

The estimated cost of distance is also quite high. The estimated cost per kilometer of pipeline

for less than 1km is almost $10, 000, 000. I estimate that the cost per km is decreasing in overall

distance. However, these cost estimates are biased upwards since my counterfactual simulations

show that predicted pipeline distance is less than actual distance built – eg if a lease is 1km from

the nearest pipeline, in expectation more than 1km will be built. This gap can be explained by

two factors. First, pipelines often do not traverse the shortest distance between two points and

must go around obstacles or land where a right-of-way could not be secured. Second, I observe

many pipelines being constructed in parallel with each other. This implies that some pipelines are

at capacity and that the nearest connection for a new well is not necessarily available. Both of
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Figure 12: Year Fixed Effects

these reasons bias my cost estimates upward and will be discussed in greater detail in the following

section.

Lastly, the parameter on the spillover term is 0.03, implying that producers do not internalize

the vast majority of spillovers for their neighbors. The estimate has a very tight confidence interval

that does not overlap with zero. However, the magnitude of the parameter is very close to zero. In

order to assess the empirical magnitudes of the cost parameters and of the spillover internalization

parameter, I use a forward simulation procedure described in the next section.

Estimate sd Interval95
Error Scale Parameter (σ) 0.70 0.13 (0.442, 0.962)

Fixed Costs of Flaring (Cf ) -3.87 0.86 (-5.55, -2.183)
Fixed Costs of Gathering (Cg) -2.13 0.54 (-3.179, -1.083)

Spillovers∆Ṽ 0.03 0.00 (0.02, 0.035)
Distance (d) -0.96 0.19 (-1.336, -0.582)

d× 1(1 ≤ d < 2) 0.01 0.09 (-0.168, 0.194)
d× 1(2 ≤ d < 3) 0.36 0.11 (0.146, 0.579)

d× 1(3 ≤ d) 0.81 0.17 (0.49, 1.139)

Table 5: DDC Results

8 Simulations and Policy Counterfactuals

Having estimated my model, I now proceed to using my model estimates for simulations. The first

set of simulations I discuss involve constructing a close analogue to the static marginal abatement
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curves constructed by Lade and Rudik (2020). Then, I proceed to a full dynamic forward simulation

which will allow me to asses the performance of my model estimates, examine the estimated

magnitudes of the parameters, and make predictions about drilling and flaring outcomes under

varying policy counterfactuals.

8.1 Estimated costs perform better than reported costs

To compare my results with previous work I follow the methodology of Lade and Rudik (2020) and

construct static marginal flaring abatement cost curves on my own sample using first, the reported

cost estimates used in that paper, then my own cost estimates.

Lade and Rudik (2020) calculate the marginal abatement cost for wellpad i as:

MACit =
FC + αddi

Git

where Gi is the sum of discounted expected production from well i from t onwards. The

industry-wide abatement curve is calculated by calculating MACit for each well, i, then ordering

them by cost. Since my unit of analysis is the lease-level I use leases as opposed to wellpads. Lade

and Rudik (2020) use a fixed cost estimate of $202, 000 lifted from a survey result. They predict αd

by using an ordered probit to predict necessary pipeline width, and pipeline cost estimates lifted

from the same survey results.

I construct a simplified version of their cost curves. First I use the same costs they did, lifted

from the report from INGAA. However, I do not do an ordered probit and instead make the

conservative calculation of assuming all pipelines are 8 inches.14 Next, I use my own distance

and cost measures lifted from my model. The fixed cost estimates are taken as the difference in

fixed costs between flared and gathered wells. I use the estimates from figure 11, since they reflect

differences in fixed costs for drilled wells as opposed to values from table 5, which reflect estimated

fixed costs for randomly selected leases.

Figure 13 plots the marginal abatement curves following Lade and Rudik (2020) and figure 14

14This is conservative because 8-inch pipelines are the most expensive in their model, and I find
that generally these engineering estimates over predict abatement.
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Figure 13: Static Marginal Abatement Curve Calculated with Engineering Estimates of Cost. The
red line gives the observed spot price of gas at the time, while the green line gives the observed
level of abatement.

Figure 14: Static Marginal Abatement Curve Calculated with Estimated Costs. The red line
gives the observed spot price of gas at the time, while the green line gives the observed level of
abatement.

plots the marginal abatement curves with my estimated costs. I’ve also plotted the spot price of

gas in red, and the observed level of abatement in green. When using engineering estimates, the

observed level of abatement is too low – implying that the cost curves are also too low. When using

my own cost estimates, the abatement cost curve shifts upwards, decreasing the wedge between

expected and observed abatement.

8.2 Full dynamic simulations: computational procedure

To calculate a full dynamic forward simulation, I can no longer rely on having log(pr(j = G))

in hand to calculate E[Vt+1]. Therefore, I take simulation draws of prices and distance changes,

then use backwards induction to calculate the expectation of V . I take draws of ϵit to determine

the action of each lease in each period. For each period, after the gathered leases are determined,

I draw a line from the existing network to each lease. Then distances for remaining leases are

re-computed for t+ 1.

Since this process relies on taking draws of distance changes and the distribution of distance

changes varies with the policy counterfactual, this routine iterates until the expectation of predicted

distance changes is close to the expectation of the distribution of distance changes used to compute
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Figure 15: Plot of the counterfactual boxes. Leases are plotted behind in light blue.

the counterfactual. Specifically, I specify that the mean predicted distance change must be within

10m of the mean of the distance changes used to compute the counterfactual. In practice, most

counterfactual runs only iterate once. All converge within two iterations. This implies two things

– first that the counterfactuals do a very good job of predicting observed distance changes. Second

that the network is not particularly sensitive to changes in policy. This will be demonstrated in

the following subsections.

Due to computational constraints, I can only compute counterfactuals on samples of the Per-

mian Basin. Figure 15 plots all of the leases in my sample. These boxes were selected since they

are from disparate regions of the Permian basin.

8.3 Performance of counterfactuals against observed activity

To assess the fit of the simulations I’ve plotted the predicted versus actual lease outcomes below

in figure 16 for each box. Expected productivity is spatially correlated, so when counterfactuals

are computed on only a small part of the basin it’s unsurprising that predicted flaring or gathering

might be systematically above or below the observed level. For example, actual flaring is higher

than the baseline counterfactual in Box 2 and lower in Box 1. However, the counterfactual simu-
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Box Actual Distance Constructed Simulation Distance
Box 1 1129.875 93.63384
Box 2 3133.516 116.0214
Box 3 814.2046 268.3943

Table 6: Actual and Predicted Pipeline Distances (km)

lation on Box 3 looks quite good. Overall, you would expect that if I could run counterfactuals on

the basin as a whole, the errors across smaller areas would average out and the fit for the overall

basin would be good.

As noted in the discussion of the computation of my counterfactuals, the counterfactuals match

predicted distance changes with observed distance changes quite well. However, the overall predic-

tion of pipelines built tends to be far too low. A comparison of predicted versus observed pipeline

construction over my sample period (01/01/2010-12/01/2019) is in table 6. The discrepancies are

likely due to the fact that my model ignores capacity and processing constraints. In practice, I

observe many parallel pipelines, which could not be rationalized in my model. However, it does

resolve why the estimated per-mile costs of pipelines in my model are so high. Recall that my

estimate of pipeline costs for pipeline costs per kilometer was $9.6 million for distances less than

1km, $6 million for distances between 2km and 3km, and $1.5 million for distances greater than

3km. In Box 2, predicted pipeline construction was off by a factor of 27 – implying that for every

well connected that was 1 km away from pipelines, 27km of pipelines was actually built. Adjusting

my pipeline costs by this factor would produce a per kilometer estimate of $355, 555 for distances

less than 1km and $55, 555 per km for distances greater than 3km. Predicted construction in box

3 was three times lower than the actual length constructed, implying a per kilometer cost of $3.2

million for distances less than 1km and $500, 000 for distances greater than 3km.

8.4 Spillover internalization does not appear to be a major driver of

flaring

To asses how the importance of the spillover internalization parameter, I run counterfactual sim-

ulations in Box 1 where I switch the parameter to 1 – implying perfect internalization. These are

plotted in figure 17. This figure plots the number of wells of each type (gathered or flared) drilled
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Figure 16: Actual Versus Simulated Outcomes
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in each time period, as well as the percentage of production relative to the baseline simulation.

Perfect internalization does seem to induce some wells that had previously been flaring to gather,

leading to a small increase in gathered gas volumes and a small decrease in flared gas volumes. I

also present total production figures in table 7. Perfect internalization leads to a 5% increase in

sold gas volumes and a 6% decrease in flared volumes. Overall, the effects of spillover internaliza-

tion seem to be relatively small. Nonetheless, given the magnitude of the social costs of flaring,

it’s plausible that perfect internalization could decrease social costs by tens of millions of dollars

per year.

One explanation for the seemingly small impact of the internalization parameter is that the

costs of gathering appear to be relatively small compared to the very high fixed costs of gathering.

I run a comparison of perfect versus zero internalization where I double the costs of pipelines.

These results are also plotted in figure 17. This seems to increase the wedge between the two

internalization scenarios (αṼ = 0 and αṼ = 1), but not dramatically.

8.5 The effect of a flaring tax, flaring ban, and gas subsidy on drilling

and flaring

To assess the performance of potential policies I run simulations in Box 1 with various levels of

flaring taxes, a gas subsidy, and a flaring ban. These results are plotted in figure 18, and aggregate

production figures can also be found in table 7. A subsidy poorly targets flaring. A $1 per Mcf gas

subsidy increases total gas production by 4% but only decreases flaring by 2% at a cost (in just

this box) of $600 million. A tax targets flaring quite well. A $5/Mcf tax reduces flared volumes

by 39%, increases gathered volumes by 5%, decreases oil produced by 2%, and raises $150 million

in revenue.

Flaring volumes seem to respond linearly to taxes at low levels of the tax, then less than linearly

as the tax get higher. A $1/Mcf tax reduces flared volumes by 9% while a $2/Mcf tax reduces

flared volumes by 20%. More than doubling that tax to $5/Mcf less than doubles the reduction

in flared volumes to 39%. Lastly, a ban eliminates all flaring, leads to a small increase in gas

production (and hence only a small increase in pipeline investment), and causes a small decrease
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in oil production. Theoretically, a ban might be attractive since there are multiple market failures

(spillover effects and the external costs of flaring). It might be the case that a ban could simply

induce flaring wells to wait to drill. However, my empirical results suggest that a ban is a very

blunt policy tool in this context, leading to an overall decrease in oil production.

8.6 Endogenous network growth has a substantial effect on drilling and

flaring

Lastly, I show that allowing the network to grow endogenously is actually quite important for

simulation outcomes. I run the simulation but fix lease distances to their values at t =2010-01-

01. Flared wells increase modestly, but connected wells decrease drastically. Results from this

simulation are plotted in figure 19, and aggregate production in this simulation can be found in

table 7. Total gas production is 16% lower if the network cannot grow, demonstrating that growth

over time is an important determinant of drilling outcomes.
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Figure 17: Simulated outcomes with the spillover internalization parameter switched to 1. The line plots present number of wells drilled in each category over
time, while the bar charts present total production from each well type relative to the baseline. The graphs in the top panel of this figure only alter the spillover
internalization parameter. The graphs in the lower panel multiply the costs of pipelines by 2 to determine whether this would increase the wedge between
αṼ = 0 and αṼ = 1.
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Figure 18: Outcomes of Flaring Ban, Flaring Tax, Gas Subsidy

Figure 19: Outcomes with network fixed at t =2010-01-01 versus endogenous
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9 Conclusion

I show that distance to pipeline infrastructure matters for flaring outcomes and that as the network

grows over time, connections become less costly. My model indicates that flaring abatement is

relatively costly, but that a tax near the likely social cost could substantially reduce flaring. A $5

per Mcf tax would reduce flared volumes due to wells not connecting by 39%. Moreover, my results

find that the majority of the decrease in flaring wells comes from flaring wells switching to not

drilling rather than switching to connecting. In addition, I also find that subsidies poorly target

flaring, and that bans only lead to a small increase in pipeline investment. My model estimates

also suggest that spatial spillovers are not internalized. However, my counterfactual simulations

suggest that the lack of spillover internalization does not have a substantial effect on flared volumes

and that the lack of internalization might simply be due to the benefits of internalization being

relatively small.

This paper makes a few important contributions to the literature. First, this paper is the first

to explore the endogenous relationship between drilling and gas pipeline construction. Second,

this paper is the first paper which models flaring and allows policies to affect the drilling mar-

gin. Third, this paper estimates pipeline costs directly instead of relying on industry reported

costs. Combined, these contributions make this paper the most accurate model of the drilling and

connecting decisions of firms.

These decisions have large consequences for U.S. greenhouse gas emissions, making this paper

a timely contribution for policymakers interested in addressing climate change. The U.S. EIA

estimates that in 2020 about 420 million Mcf of natural gas was vented or flared in the U.S. (U.S.

Energy Information Administration, 2021b). Assuming a social cost of flaring between $3 and $6

implies that flaring accounts for billions of dollars in climate damages annually.
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10 Appendix

10.1 Processing the Leases

I run the raw lease data through two rounds of clustering. The first round is intended to identify

and remove duplicates. The second round is intended to identify lease amendments and changes

to lease ownership.

For the first round of clustering I follow many of the lease processing choices of Herrnstadt,

Kellogg, and Lewis (2020). In the Enverus data on leases, there are many likely duplicates that

need to be dealt with. There are many cases where the same plot is leased to the same grantee

by multiple grantors. These observations are likely a result of undivided mineral interests. For

example, multiple members of a family might each show up as a distinct grantor with her own

row in the data. I keep all observations labeled as “Leases,” “Lease amendments,” “memos of

leases,” and “lease extensions.” I drop observations on mineral rights assignments, lease ratification,

royalty deeds, and mineral deeds. Next, I construct a dissimilarity matrix which I pass along to an

agglomerative hierarchical clustering method implemented by the agnes function in the cluster

package, version 2.2.1, in R.

The entries of the dissimilarity matrix are calculated as which I calculate as:

dij =
∑
k

mk(x
k
i , x

k
j )

where mk(·) is equal to 0 if the kth attribute of lease i and j are identical, and positive but

less than or equal to 1 otherwise. The attributes and calculation of mk are as follows:

• mk(x
k
i , x

k
j ) = |xki − xkj | for various continuous variables. I use this on both the start and end

date of the leases, and the Demerau-Levenshtein string distance between the grantors and

grantees. Once I calculate all the pairwise combinations, I then rescale all the observations by

dividing through by the max (for each characteristic), so all the date differences lie between

0 and 1.

• mA(x
A
i , x

A
j ) =

|xA
i ∩xA

j |
2(|xA

i |+|xA
j |) - where xAi is the spatial polygon of i. This measures the average
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percentage overlap in area between i and j, and will be bound between 0 (if the polygons do

not intersect) and 1 (if the polygons are exactly the same).

Before clustering, there are over 500,000 observations in the data. Constructing a 500,000×500,000

matrix would be infeasible. Even when accounting for the fact that the matrix would be symmetric

it would have over 100 billion elements. To deal with this, I run the clustering algorithm at the

year of expiration date level.

After this initial round of clustering, primarily intended to identify rows of duplicates, I run

this data through one more layer of clustering. This time, I just consider the average percentage

overlap between two leases and group them together if the percentage overlap is over 70%. Once

two leases are clustered together, I consider the lease with the greatest Instrument Date active

at time t to be the active lease and throw out the older ones. Consider the hypothetical scenario

below: In this example, for all dates before 12-01-2009, the expiration date would be treated as

Effective Date Expiration Date Instrument Date Polygon
12-01-2007 12-01-2010 12-01-2007 A
12-01-2009 12-01-2012 12-01-2009 A

12-01-2010. So for example at 12-01-2008, there would be 24 months until the lease expiration.

Once the new lease becomes active after 12-01-2009, the time until expiration would resent to 36

months.
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